《电子元件与材料》
元器件是整机的基础,它在制造过程中可能会由于本身固有的缺陷或制造工艺的控制不当,在使用中形成与时间或应力有关的失效。为了保证整批元器件的可靠性,满足整机要求,必须把使用条件下可能出现初期失效的元器件剔除。元器件的失效率随时间变化的过程可以用类似\"浴盆曲线\"的失效率曲线来描述,早期失效率随时间的增加而迅速下降,使用寿命期(或称偶然失效期)内失效率基本不变。
筛选的过程就是促使元器件提前进入失效率基本保持常数的使用寿命期,同时在此期间剔除失效的元器件。
事物好与坏的判别必须要有标准去衡量。判断元器件的失效与否是由失效判别标准一一失效判据所确定的。
失效判据是质量和可靠性的指标,有时也有成本的内涵,所以元器件失效不仅指功能的完全丧失,而且指电学特性或物理参数降低到不能满足规定的要求。简而言之,产品失去规定的功能称为失效。
在选择可靠性筛选次序时先了解一下元器件失效都有哪些?
失效一般分为现场失效和试验失效。
现场失效一般是在装机以后出现的失效,因此,我们在元器件测试筛选过程中只考虑试验失效。
试验失效主要是封装失效和电性能失效。封装失效主要依靠环境应力筛选来检测。
所谓环境应力筛选,即在筛选时选择若干典型的环境因素,施加于产品的硬件上,使各种潜在的缺陷加速为早期故障,然后加以排除,使产品可靠性接近设计的固有可靠性水平,而不使产品受到疲劳损伤。
在正常情况下是通过在检测时施加一段时问的环境应力后,对外观的检查(主要是镜检,根据元器件的质量要求,采用放大10倍对元器件外观进行检测;也可以根据需要安排红外线及X射线检查),以及气密性筛选来完成,当有特殊需要时,可以增加一些DPA(破坏性物理分析)等特殊测试。
这些筛选项目对电性能失效模式不会产生触发效果。所以,一般将封装失效的筛选放在前面,电性能失效的筛选放在后面。
电性能失效可以分为连结性失效、功能性失效和电参数失效。
连结性失效指开路、短路以及电阻值大小的变化,这类失效在元器件失效中占有较大的比例。因为在元器件筛选测试过程中,由于过电应力所引起的大多为连结性失效,同时,连结性失效可以引发功能性失效和电参数失效,但是功能性失效和电参数失效不会引发连结性失效。
主要原因是,当连结性失效模式被特定的筛选条件触发时,往往出现的现象为元器件封装涂覆发生锈蚀、外壳断裂、引线熔断、脱落或者与其他引线短路,主要表现为机械和热应力损伤,但是有时并不表现为连结性故障,而是反映为金属疲劳、键合强度不够等问题,这些本身不会引发连结性失效,但是会引发功能性失效和电参数失效,需要通过功能性和电参数监测才能发现。
但是,电路的功能性失效和电参数失效被特定的的筛选条件触发时,出现的现象是某些特定的功能失效、电参数超差等。
造成这些失效的主要原因在于:制造、设计中的缺陷以及生产工艺控制不严,使生产过程中各种生产要素如空气洁净度等级、超纯水的质量监测、超纯气体和化学试剂达不到规定的要求;在运输转运过程中由于防静电措施不到位也会发生静电损伤。
这些因素作用下半导体晶体会受到各种表面污染物的玷污,会使产品不能达到规定的质量等级要求。当受到特定的外部条件激发的情况下,就会产生功能性失效和电参数失效,但是这些功能性失效和电参数失效造成的影响往往只能造成元器件部分的功能失去作用,还不能使芯片的封装和各部分的连结线出现烧毁、短路、开路等现象,所以电路的功能性失效和电参数失效与连结性失效不产生引发效果。
在安排测试筛选先后次序时,有两种方案:
a)方案1:将不产生连环引发效果的失效模式筛选放在前面,将可以与其他失效模式产生连环引发效果的失效模式筛选放在后面。
b)方案2:将可以与其他失效模式产生连环引发效果的失效模式筛选放在前面,将不产生连环引发效果的失效模式筛选放在后面。
如果选择方案1,会发现将可以与其他失效模式产生连环引发效果的失效模式筛选放在后面时,出现本身失效模式没有被触发、其他关联的相关失效模式被触发的情况时,这种带有缺陷的元器件不能被准确地定位、剔除,因为该类失效模式的检测已经在前面做过了。而选择方案2就可以非常有效地避免上述问题的发生,使筛选过程优质、经济和高效。
上一篇:撑不住了!日本电子元件企业接连向美发申请:
下一篇:没有了